If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+8x=120
We move all terms to the left:
16x^2+8x-(120)=0
a = 16; b = 8; c = -120;
Δ = b2-4ac
Δ = 82-4·16·(-120)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-88}{2*16}=\frac{-96}{32} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+88}{2*16}=\frac{80}{32} =2+1/2 $
| -1-7=-11v+19 | | -6.8=3f+11.2 | | 25x+5=8-x | | 1=-5m+6m | | 8(y+4)-2(y-1)=-70-3y | | 1/5(x+25)+3=5 | | 6x+1=x+13 | | 3(x+5=x+21 | | X/3+2.4x=-8 | | 3t=8t-25 | | =+−4y7+−10y37 | | 21-11=5(x-2) | | 2(3t-7)=23t+8 | | 24h/6=(6)4 | | 3y+5=35-7y | | -9=z/3+2 | | 17=20-4n | | 3(5+3x)=9+12 | | x^2-14x+84=0 | | 9x+9=10x-9 | | 8(x+7)=6(x-4)12x+21=3(4x+6) | | 5x-(x+4)=-10-2(x-8) | | 2/3(x-6)=-1/3x-4 | | x62-14x+84=0 | | 7=2/9w | | -0.5x=-6.4 | | 3(x-5=x+21 | | 1n-2=9 | | -10.5=d+5.9 | | 2(x-3)=3(x+12) | | 8a-36=4a+400 | | Z+(z-6)+2=10 |